Uimhir choimpléascach
Sa mhatamaitic, is éard is uimhir choimpléascach ann ná ball de chóras uimhreach a leathnaíonn na réaduimhreacha le huimhir speisialta darb ainm i, ar a dtugtar an t-aonad samhailteach agus a chomhlíonann an chothromóid ; is féidir gach uimhir choimpléascach a scríobh san fhoirm a + bi; is réaduimhreacha iad a agus b anseo. Toisc nach gcomhlíonann aon réaduimhir an chothromóid thuas, thug René Descartes uimhir shamhailteach ar i. San uimhir choimpléascach a+bi, tugtar an chuid réadach ar a agus tugtar an chuid shamhailteach ar b. Úsáidtear an tsiombail ar thacar na n-uimhreacha coimpléascacha. In ainneoin na hainmníochta stairiúla “samhailteach”, meastar go bhfuil uimhreacha coimpléascacha díreach chomh “réadach” leis na réaduimhreacha sa mhatamaitic, agus imríonn siad ról bunúsach sa chur síos eolaíochta ar an domhan nádúrtha.
Ba é Rafael Bombelli ón Iodáil a rinne cur síos ar na rialacha ailgéabracha do na huimhreacha coimpléascacha. Rinne an tÉireannach William Rowan Hamilton forbairt air seo le teoiric na gceathairníon.
Airíonna Ailgéabrach
[cuir in eagar | athraigh foinse]Suimiú (+) | Iolrú (x) | |
Iamh: | (a + ib) + (c + id): = (a + c) + i(b + d) | (a + ib)(c + id): = (ac − bd) + i(bc + ad). |
Ball Céannachta: | (a + ib) + (0 + i0) = (a + ib) | (a + ib) × (1 + i0) = (a + ib) |
Ball Inbhéartach: | (a + ib)+(-a - ib)=0 |
Is síol é an t-alt seo. Cuir leis, chun cuidiú leis an Vicipéid. Má tá alt níos forbartha le fáil i dteanga eile, is féidir leat aistriúchán Gaeilge a dhéanamh. |